Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




IA para imágenes puede aliviar las limitaciones del flujo de trabajo radiográfico de emergencia

Por el equipo editorial de HospiMedica en español
Actualizado el 29 Mar 2023

Durante las últimas décadas, los departamentos de emergencia (DE) de todo el mundo han experimentado una mayor presión en el flujo de trabajo y un aumento correspondiente en la demanda de imágenes médicas las 24 horas del día, los 7 días de la semana. Más...

Sin embargo, la mayoría de los departamentos de radiología luchan por proporcionar recursos para una cobertura 24 horas al día, 7 días a la semana. Como resultado, los médicos de urgencias deben interpretar los exámenes radiográficos antes de que esté disponible un informe radiológico, lo que crea nuevos desafíos organizacionales para garantizar la precisión del diagnóstico y un tiempo de respuesta rápido. La inteligencia artificial (IA), específicamente la aplicación del aprendizaje profundo en imágenes radiológicas, se ha convertido en una solución potencial para mejorar el flujo de trabajo del departamento de emergencias. La mayoría de las soluciones comerciales de IA se centran en la clasificación y el diagnóstico de radiografías simples de tórax o musculoesqueléticas (ME). Varios estudios realizados en entornos de salas de urgencias han demostrado un mejor rendimiento del diagnóstico por parte de los médicos de urgencias y/o residentes de radiología para detectar fracturas esqueléticas apendiculares o anomalías torácicas. Sin embargo, el impacto de estas soluciones de IA en todo el flujo de trabajo de emergencia no está claro, ya que se concentran en hallazgos de imágenes individuales, partes del cuerpo o grupos de edad.

Por consiguiente, los investigadores del Hospital General de Valenciennes (Valenciennes, Francia) realizaron un estudio para evaluar la eficacia de una solución comercial basada en el aprendizaje profundo para la clasificación de los flujos de trabajo de emergencias pediátricas y de adultos, específicamente mediante la detección de hallazgos radiográficos ME y de tórax. Además, el estudio tuvo como objetivo determinar su impacto en las discrepancias entre los médicos de emergencia y los radiólogos. La muestra estuvo compuesta por 1.772 casos de pacientes a los que se les realizó radiografías de emergencia de cualquier parte del cuerpo, excepto columna, cráneo y abdomen. Entre ellos, 172 casos (9,7 % de la muestra) tenían discrepancias entre las lecturas iniciales de los médicos de urgencias y las lecturas finales del departamento de radiología. Un radiólogo senior especializado en estructuras ME revisó y adjudicó estos casos, con acceso a todos los registros clínicos relevantes.

El equipo utilizó software de IA disponible comercialmente para clasificar a los pacientes en función de los rayos X y evaluar su desempeño en el manejo de casos con lecturas discrepantes. Los resultados mostraron que el sistema de IA tenía un nivel de sensibilidad comparable al de los médicos de urgencias y logró una tasa de precisión del 90,1 % en los 172 casos que habían sido mal diagnosticados por los mismos lectores. Los investigadores notaron que el modelo de IA probado en este estudio funcionó de manera similar a los utilizados en investigaciones anteriores, pero su estudio puede haber sido el primero en combinar radiografías ME y de tórax. Esta combinación permitió cubrir un rango más amplio de casos en el flujo de trabajo radiográfico a pesar de excluir las imágenes de columna, cráneo y abdomen. Además, el rendimiento de la IA no varió significativamente entre la edad y los subgrupos de partes del cuerpo, lo cual es crucial para su uso generalizado en el entorno clínico.

Enlaces relacionados:
Hospital General de Valenciennes  


Miembro Platino
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
Heavy-Duty Wheelchair Scale
6495 Stationary
Autoclave
Advance
Newborn Hearing Screener
ALGO 7i
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.