Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




Inteligencia artificial para identificar melanomas

Por el equipo editorial de HospiMedica en español
Actualizado el 25 Jun 2018
Las redes neuronales convolucionales (CNN, por sus siglas en inglés) entrenadas de inteligencia artificial (IA) son mejores que los dermatólogos experimentados para detectar el cáncer de piel, según un nuevo estudio.

Investigadores de la Universidad de Heidelberg (Alemania), la Universidad de Passau (Alemania) y otras instituciones, entrenaron al Inception CNN de Google para identificar el cáncer de piel mostrándole más de 100.000 imágenes almacenadas de melanomas malignos, así como lunares y nevos benignos. Más...
Luego compararon el desempeño de la CNN con el de 58 dermatólogos internacionales a través de un conjunto de pruebas de 100 imágenes, utilizando dos niveles de evidencia; el nivel I incluía imágenes de dermatoscopia por sí sola, y el nivel II incluía dermatoscopia más información clínica y fotografías.

Se les pidió a los dermatólogos que primero hicieran un diagnóstico de melanoma maligno o de lunar benigno solo a partir de las imágenes dermatoscópicas (nivel I) y tomaran una decisión sobre cómo tratarlo (es decir, cirugía, seguimiento a corto plazo o ninguna acción necesaria). Cuatro semanas después, se les proporcionó información clínica adicional sobre el paciente (incluida la edad, el sexo y la posición de la lesión) y las imágenes de primeros planos de los mismos 100 casos (nivel II), y se les solicitó una vez más su diagnóstico y diagnóstico y las decisiones de manejo.

Los resultados revelaron que en el nivel I, los dermatólogos detectaron con exactitud un promedio de 86,6% de los melanomas, e identificaron correctamente un promedio de 71,3% de las lesiones que no eran malignas. Sin embargo, cuando la CNN se reajustó al mismo nivel que los médicos para identificar correctamente los lunares benignos (71,3%), la CNN detectó con éxito el 95% de los melanomas. En el nivel II, los dermatólogos mejoraron su desempeño, diagnosticando con exactitud el 88,9% de los melanomas malignos y el 75,7% que no eran cancerosos. El estudio fue publicado el 28 de mayo de 2018 en la revista Annals of Oncology.

“La CNN pasó por alto menos melanomas, lo que significa que tenía una sensibilidad más alta que la de los dermatólogos, y diagnosticó erróneamente menos lunares benignos como melanomas malignos, lo que significa que tenía una especificidad mayor; esto daría como resultado menos cirugías innecesarias”, dijo el autor principal, el profesor Holger Haenssle, MD, de la Universidad de Heidelberg. “Cuando los dermatólogos recibieron más información clínica e imágenes en el nivel II, su desempeño diagnóstico mejoró. Sin embargo, la CNN, que todavía trabajaba únicamente a partir de imágenes dermatoscópicas sin información clínica adicional, siguió superando las capacidades de diagnóstico de los médicos”.

“Esta CNN puede servir a los médicos que participan en el cribado del cáncer de piel como una ayuda en su decisión de tomar una biopsia de una lesión o no hacerlo. La mayoría de los dermatólogos ya usan sistemas de dermatoscopia digital para obtener imágenes y almacenar lesiones para la documentación y el seguimiento “, concluyó el profesor Haenssle. “La CNN puede evaluar fácil y rápidamente la imagen almacenada para obtener una ‘opinión experta’ sobre la probabilidad de melanoma. Actualmente estamos planificando estudios prospectivos para evaluar el impacto de la CNN en la vida real para médicos y pacientes”.

El aprendizaje profundo es parte de una familia más amplia de métodos de aprendizaje automático basados en representaciones de datos de aprendizaje, en oposición a los algoritmos específicos de tareas. Implica algoritmos de red neuronal que utilizan una cascada de muchas capas de unidades de procesamiento no lineales para la extracción de características y la transformación, con cada capa sucesiva utilizando la salida de la capa anterior como entrada, formando así una representación jerárquica.

Enlace relacionado:
Universidad de Heidelberg
Universidad de Passau


Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
Enteral Feeding Pump
SENTINELplus
Newborn Hearing Screener
ALGO 7i
X-Ray Meter
Cobia SENSE
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.