Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Un modelo de IA predice el riesgo de cáncer de mama a 5 años a partir de mamografías

Por el equipo editorial de HospiMedica en español
Actualizado el 09 May 2024

Se predice que aproximadamente el 13 % de las mujeres estadounidenses, o una de cada ocho, desarrollarán cáncer de mama invasivo a lo largo de su vida, y 1 de cada 39 mujeres (3 %) sucumbirá a la enfermedad, según la Sociedad Estadounidense del Cáncer. Más...

La mamografía sigue siendo una herramienta vital para la detección temprana del cáncer de mama y ofrece la ventana de tratamiento más eficaz. Las citas periódicas para mamografías pueden reducir significativamente los riesgos de mortalidad por cáncer de mama. No obstante, el desafío sigue siendo predecir con precisión qué personas contraerán cáncer de mama únicamente mediante métodos de detección. Mirai, un algoritmo avanzado de aprendizaje profundo, ha sido reconocido por su capacidad para predecir el riesgo de cáncer de mama, aunque su proceso de toma de decisiones sigue sin explicarse en gran medida, lo que genera riesgos de dependencia excesiva y diagnósticos erróneos por parte de los radiólogos. Ahora, los investigadores han desarrollado un modelo de inteligencia artificial (IA) innovador e interpretable capaz de predecir el riesgo de cáncer de mama a cinco años basándose en el análisis de mamografías.

En el estudio, investigadores de la Universidad de Duke (Durham, Carolina del Norte, EUA) realizaron un estudio comparativo utilizando su modelo de aprendizaje profundo recientemente ideado, denominado AsymMirai, frente a las evaluaciones de riesgo de cáncer de mama de uno a cinco años de Mirai. AsymMirai hereda su "frontal" de aprendizaje profundo de Mirai, pero incorpora un módulo interpretable llamado disimilitud bilateral local, que se centra en el contraste de tejido entre los senos izquierdo y derecho. Este estudio analizó 210.067 mamografías de 81.824 pacientes del conjunto de datos de imágenes Emory Breast (EMBED) que abarca desde enero de 2013 hasta diciembre de 2020, empleando los algoritmos Mirai y AsymMirai.

Los hallazgos revelaron que el modelo simplificado de aprendizaje profundo, AsymMirai, casi igualaba el rendimiento del algoritmo Mirai de última generación en la predicción del riesgo de cáncer de mama de uno a cinco años. Además, este estudio destacó la importancia de la asimetría bilateral como indicador clínico vital, lo que sugiere su potencial como un nuevo marcador de imágenes para evaluar el riesgo de cáncer de mama. La transparencia detrás del proceso de toma de decisiones de AsymMirai lo convierte en una herramienta invaluable para los radiólogos, ya que mejora la precisión del diagnóstico del cáncer de mama y la predicción de riesgos.

"Podemos, con una precisión sorprendentemente alta, predecir si una mujer desarrollará cáncer en los próximos 1 a 5 años basándose únicamente en diferencias localizadas entre el tejido mamario izquierdo y derecho", afirmó el autor principal del estudio, Jon Donnelly, BS, doctorando del Departamento de Ciencias de la Computación de la Universidad de Duke. "Esto podría tener un impacto público porque, en un futuro no muy lejano, podría afectar la frecuencia con la que las mujeres reciben mamografías".

Enlaces relacionados:
Universidad de Duke


Miembro Platino
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
Enteral Feeding Pump
SENTINELplus
Exam Table
PF400
Imaging Table
Stille imagiQ2
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.