Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Modelo de IA dibuja mapas para identificar con precisión tumores y enfermedades en imágenes médicas

Por el equipo editorial de HospiMedica en español
Actualizado el 09 Apr 2024

La interpretación de las imágenes médicas varía según las diferentes regiones del mundo, particularmente en los países en desarrollo donde la escasez de médicos y las largas colas de pacientes son comunes. Más...

La inteligencia artificial (IA) se ha convertido en una ayuda valiosa en estos entornos. La detección automatizada de imágenes médicas que utiliza IA puede actuar como una herramienta de apoyo para los médicos, escaneando previamente imágenes y resaltando hallazgos inusuales, como tumores o indicadores tempranos de enfermedades (biomarcadores), para una revisión médica adicional. Este enfoque no sólo ahorra tiempo sino que también puede mejorar la precisión de los diagnósticos. Sin embargo, los modelos tradicionales de IA carecen de la capacidad de explicar sus hallazgos, indicando simplemente la presencia o ausencia de tumores sin mayor elaboración.

Ahora, investigadores del Instituto Beckman de Ciencia y Tecnología Avanzada (Urbana, Illinois, EUA) han desarrollado un modelo de IA innovador que no sólo detecta anomalías sino que también explica cada decisión que toma. Este modelo, a diferencia de las herramientas de IA estándar, proporciona retroalimentación interpretativa en lugar de simplemente identificar tumores. Convencionalmente, los modelos de IA que ayudan a los médicos se entrenan con numerosas imágenes médicas, algunas que muestran anomalías y otras normales. Estos modelos, al encontrar una nueva imagen, asignan una puntuación de probabilidad que indica la probabilidad de que haya un tumor presente.

Este novedoso modelo de IA va un paso más allá al ofrecer una explicación visual de su proceso de toma de decisiones a través de lo que se conoce como "mapa de equivalencia" (E-map). Este E-map transforma la imagen médica original, como una radiografía o una mamografía, asignando valores a diferentes regiones según su importancia médica para predecir anomalías. El modelo agrega estos valores para derivar una puntuación de diagnóstico final. Este enfoque transparente permite a los médicos ver qué áreas del mapa contribuyeron de manera más significativa al diagnóstico e investigar estas regiones más de cerca, mejorando la comprensión y respondiendo las consultas de los pacientes sobre el proceso de diagnóstico.

El equipo de investigación entrenó este modelo en más de 20.000 imágenes en tres tareas de diagnóstico de enfermedades diferentes. Se le enseñó al modelo a identificar signos tempranos de tumores en mamografías simuladas, a detectar la acumulación de drusas en imágenes retinianas indicativas de degeneración macular y a reconocer la cardiomegalia en radiografías de tórax. En comparación con los sistemas de IA tradicionales sin capacidades de autoexplicación, este nuevo modelo demostró una precisión comparable: 77,8 % en mamografías, 99,1 % en imágenes OCT de retina y 83 % en radiografías de tórax, igualando la precisión de los modelos existentes. El éxito de este modelo, que emplea una red neuronal profunda que imita la complejidad de las neuronas humanas, se atribuye a su diseño inspirado en redes neuronales lineales más simples e interpretables. Los investigadores pretenden ampliar la aplicación de este modelo a varias partes del cuerpo, con la capacidad de distinguir potencialmente entre diferentes anomalías en desarrollos futuros.

"La idea es ayudar a detectar el cáncer y las enfermedades en sus primeras etapas, como una X en un mapa, y comprender cómo se tomó la decisión. Nuestro modelo ayudará a agilizar ese proceso y hacerlo más fácil tanto para los médicos como para los pacientes", dijo Sourya Sengupta, autor principal del estudio y asistente de investigación graduado en el Instituto Beckman.

"Estoy entusiasmado con el beneficio directo de nuestra herramienta para la sociedad, no sólo en términos de mejorar el diagnóstico de enfermedades, sino también en la mejora de la confianza y la transparencia entre médicos y pacientes", añadió el investigador principal Mark Anastasio, investigador del Instituto Beckman y profesor y profesor Donald Biggar Willet y Jefe del Departamento de Bioingeniería de Illinois.

Enlaces relacionados:
Instituto Beckman


Miembro Platino
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gynecological Examination Chair
arco-matic
Infant Resuscitator
Easypuff
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.