Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




IA diagnostica fracturas de muñeca tan bien como radiólogos

Por el equipo editorial de HospiMedica en español
Actualizado el 09 Apr 2024

En el campo de las imágenes médicas, la radiografía convencional es el método principal para diagnosticar las fracturas de muñeca. Más...

Sin embargo, desafíos como el posicionamiento, la técnica, la cooperación del paciente y los errores de interpretación subóptimos, que a menudo surgen de la inexperiencia del médico, la fatiga o las malas condiciones de visualización, pueden afectar la precisión de estas radiografías. Los errores de interpretación más frecuentes en los departamentos de emergencia (DE) son las fracturas omitidas, lo que provoca retrasos en el tratamiento. Los médicos, en particular aquellos con formación limitada en imágenes musculoesqueléticas, a menudo tienen dificultades para identificar las fracturas de muñeca, especialmente cuando los signos son sutiles. El avance del aprendizaje profundo (DL) en la automatización del diagnóstico de fracturas de muñeca podría ayudar significativamente a los médicos, y los desarrollos recientes han visto mejoras sustanciales en las tasas de error de clasificación de imágenes de los modelos de DL. Ahora, un nuevo metanálisis revela que los algoritmos de inteligencia artificial (IA), especialmente las redes neuronales convolucionales (CNN), son muy eficaces para detectar fracturas de muñeca a partir de rayos X simples y tienen un desempeño a la par de profesionales sanitarios capacitados.

El estudio realizado por investigadores del Hospital Universitario del Sur de Dinamarca (Odense, Dinamarca) implicó analizar varias bases de datos médicas desde enero de 2012 hasta marzo de 2023. El equipo identificó seis estudios que aplicaron IA de aprendizaje profundo para diagnosticar fracturas radiales y cubitales mediante radiografías. Los estudios incluyeron colectivamente 33.026 imágenes de rayos X. Cada estudio empleó modelos de CNN entrenados en un conjunto de datos de imágenes y comparó su precisión diagnóstica con la de expertos sanitarios especializados en diagnóstico de fracturas. El enfoque en las fracturas de muñeca en este metanálisis se debió a su alta tasa de diagnóstico erróneo en los DE, donde su detección mediante rayos X puede ser compleja.

Una revisión exhaustiva de estos estudios indicó que las CNN, comparadas con el consenso de expertos sanitarios, lograron una tasa de sensibilidad del 92 % y una tasa de especificidad del 93 %. Este hallazgo posiciona a las CNN como una herramienta preliminar eficaz para revisar radiografías, lo que potencialmente reduce las fracturas pasadas por alto cuando se realiza un seguimiento mediante un examen de un profesional de la salud. Sin embargo, el estudio reconoce la necesidad de realizar más investigaciones y enfatiza la importancia de las pruebas de conjuntos de datos externos, metodologías uniformes y estándares de referencia de expertos independientes para determinar completamente la efectividad de los algoritmos de diagnóstico de IA. Los estudios futuros también deberían centrarse en los resultados de los pacientes como punto de referencia para comprender el impacto de las CNN en el mundo real en entornos clínicos.

“Para los médicos, la IA podría utilizarse potencialmente para mejorar la confianza en el diagnóstico, especialmente en los campos de la radiología. Los algoritmos de IA pueden resultar especialmente útiles para los médicos menos experimentados”, concluyeron los investigadores.

Enlaces relacionados:
Hospital Universitario del Sur de Dinamarca  


Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
X-Ray Meter
Cobia SENSE
Autoclave
Advance
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.