Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Algoritmo de aprendizaje profundo realiza segmentación automática de cerebros neonatales a partir de imágenes de resonancia magnética

Por el equipo editorial de HospiMedica en español
Actualizado el 03 Apr 2024

La resonancia magnética (RMN) es una herramienta vital en el diagnóstico médico, particularmente debido a sus imágenes de alta resolución y contraste superior de los tejidos blandos, que la hacen crucial para evaluaciones cerebrales. Más...

Esta técnica de imágenes es particularmente vital para los recién nacidos, especialmente para evaluar la encefalopatía neonatal, donde ayuda a comprender la presencia y el patrón de lesiones cerebrales para un mejor pronóstico y planificación del tratamiento. La integración de la inteligencia artificial (IA) y el aprendizaje automático (ML) ha mejorado significativamente la precisión predictiva de los resultados funcionales en bebés utilizando datos de resonancia magnética. Un paso crucial en la preparación de datos para el análisis de ML de la resonancia magnética cerebral es la extracción del cerebro o la extracción del cráneo. Sin embargo, el desarrollo de algoritmos de extracción de cerebros neonatales ha sido limitado. Para abordar esta brecha, los investigadores han introducido un algoritmo automatizado basado en aprendizaje profundo para la extracción de resonancia magnética cerebral neonatal.

Un esfuerzo de colaboración entre investigadores de la Universidad de California en San Francisco (UCSF) y el Centro Médico de la Universidad de Duke (Durham, Carolina del Norte, EUA) ha llevado a la creación de ANUBEX. Este algoritmo de aprendizaje profundo está diseñado específicamente para la segmentación automática de cerebros neonatales a partir de exploraciones por resonancia magnética. El desarrollo de ANUBEX, un extractor automatizado de resonancia magnética cerebral nnU-Net neonatal, utilizó varias secuencias de resonancia magnética, como imágenes ponderadas en T1, ponderadas en T2 y ponderadas por difusión (DWI) de estudios de resonancia magnética neonatal.

Los investigadores descubrieron que ANUBEX mantiene un rendimiento constante cuando se entrena en exploraciones de resonancia magnética independientes de la secuencia o con movimiento degradado, aunque mostró una efectividad ligeramente menor en cerebros prematuros. El enfoque basado en el aprendizaje profundo de ANUBEX ha demostrado un rendimiento preciso en resonancias magnéticas de alta y baja resolución, ofreciendo un procesamiento computacional rápido. Esta precisión en la segmentación del tejido cerebral es crucial para el análisis de imágenes y las mediciones volumétricas posteriores. Las direcciones futuras de esta investigación incluyen ampliar la evaluación de la precisión de ANUBEX más allá del rango de edad neonatal para incluir a niños pequeños y adultos. Además, es necesario evaluar la eficacia del modelo en cerebros con diversas patologías estructurales.

Enlaces relacionados:
UCSF
Centro Médico de la Universidad de Duke  


Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
Heavy-Duty Wheelchair Scale
6495 Stationary
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Pulmonary Ventilator
OXYMAG
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.