Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Sistema de IA combina imágenes por TC con datos clínicos y genéticos para detección temprana del cáncer de pulmón

Por el equipo editorial de HospiMedica en español
Actualizado el 19 Mar 2024

El pronóstico del carcinoma de pulmón ha evolucionado significativamente con el descubrimiento de dianas moleculares y sus correspondientes tratamientos. Más...

Específicamente, las mutaciones en el gen del receptor del factor de crecimiento epidérmico (RFCE), que se encuentra en el carcinoma de pulmón, sirven como objetivos clave para terapias especializadas. Sin embargo, en países con recursos limitados como la India, los métodos de prueba avanzados, como la secuenciación de próxima generación, siguen siendo inaccesibles para un uso generalizado. Los desafíos también incluyen obtener suficiente tejido a partir de biopsias centrales de pulmón y lidiar con la heterogeneidad intratumoral inherente que complica la identificación de tejidos tumorales adecuados. Ahora, los investigadores han demostrado que un sistema basado en IA puede detectar y analizar automáticamente las características de los nódulos pulmonares a partir de imágenes de TC, prediciendo la probabilidad de mutaciones del RFCE. Esta innovación ayuda a los oncólogos y pacientes en entornos con recursos limitados brindándoles una atención casi óptima y guiando las decisiones de tratamiento adecuadas.

Estudios anteriores que aprovechan la IA con imágenes de TC se han mostrado prometedores a la hora de categorizar y analizar nódulos pulmonares sin incurrir en costos adicionales. Sin embargo, la mayoría de estos métodos se han centrado únicamente en la detección de nódulos en imágenes de TC. Además, si bien la IA se ha utilizado para extraer información pulmonar completa para predecir el genotipo de RFCE y evaluar las respuestas a la terapia dirigida contra el cáncer de pulmón, dichos esfuerzos se han enfocado mayormente en las poblaciones blanca y china. Centrándose principalmente en la población india, investigadores dirigidos por el Instituto y Centro de Investigación Oncológico Rajiv Gandhi (Nueva Delhi, India) se propusieron desarrollar una estrategia basada en IA que no solo pudiera detectar sino también caracterizar nódulos pulmonares, indicando el estado mutacional del RFCE en pacientes con carcinoma de pulmonar. Esto ayudaría a clasificar a los pacientes que requieren un perfil molecular extenso del gen controlador RFCE.

El equipo creó un sistema predictivo basado en IA (AIPS) totalmente automatizado utilizando algoritmos de aprendizaje automático (ML) y aprendizaje profundo (DL). Este sistema puede detectar características de nódulos pulmonares a partir de imágenes de TC y evaluar la probabilidad de una mutación de RFCE, eliminando así la necesidad de anotaciones de imágenes que requieren mucho tiempo por parte de radiólogos y de ingeniería de características complejas. Además de incorporar la secuenciación del gen RFCE y los datos de imágenes por TC de 2.277 pacientes con carcinoma de pulmón en tres cohortes en la India y una cohorte de población blanca de TCIA, los investigadores utilizaron la cohorte LIDC-IDRI para entrenar el modelo AIPS-Nodule (AIPS-N). Este modelo detecta y caracteriza automáticamente los nódulos pulmonares. Se evaluó la eficacia de la combinación del modelo AIPS-N con factores clínicos en el modelo AIPS-Mutación (AIPS-M) para predecir el genotipo RFCE, logrando valores de área bajo la curva (AUC) que oscilaban entre 0,587 y 0,910. El AIPS-N detectó con éxito nódulos con un AP50 promedio del 70,19 % y predijo puntuaciones para cinco propiedades de los nódulos pulmonares. Esta investigación sugiere que las imágenes por TC combinadas con un sistema automatizado de IA para el análisis de nódulos pulmonares pueden predecir de manera no invasiva y rentable el genotipo de RFCE, identificando pacientes con mutaciones de RFCE.

Enlaces relacionados:
Instituto y Centro de Investigación Oncológico Rajiv Gandhi
 


Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
Temperature Monitor
ThermoScan Temperature Monitoring Unit
Infant Incubator
OKM 801
X-Ray Meter
Cobia SENSE
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.