Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Nueva tecnología muestra imágenes del flujo sanguíneo en tiempo real

Por el equipo editorial de HospiMedica en español
Actualizado el 19 Mar 2024

Comprender la dinámica del flujo sanguíneo, o hemodinámica, proporciona información fundamental sobre diversas enfermedades vasculares. Más...

La información sobre factores como la velocidad del flujo sanguíneo y la oxigenación son indicadores clave en la detección temprana y el seguimiento de afecciones como la aterosclerosis, los aneurismas, la trombosis y más. Si bien algunos métodos de imágenes clínicas existentes pueden detectar estas propiedades hemodinámicas, a menudo requieren el uso de agentes de contraste o la exposición a radiación ionizante, lo que plantea riesgos potenciales para la salud. A pesar de su importancia, la medición clínica rutinaria de estas propiedades hemodinámicas ha sido limitada debido a limitaciones tecnológicas. Ahora, puede haber un gran avance en el horizonte tras un nuevo desarrollo.

Un equipo de investigadores del Instituto de Tecnología de California (Caltech, Pasadena, CA, EUA) y la Universidad del Sur de California (Los Ángeles, CA, EUA) ha desarrollado un método de obtención de imágenes 3D no invasivo y de bajo costo llamado Tomografía Computarizada Fotoacústica a través de un Relé Ergódico (PACTER). Se ha demostrado que este método genera de forma efectiva imágenes del flujo de sangre en tiempo real en estudios tanto en animales como en humanos. El equipo se centró en explorar alternativas basadas en el efecto fotoacústico, un fenómeno que describe la transmisión de ondas sonoras tras la absorción de luz. Este efecto se utiliza en imágenes fotoacústicas para visualizar los tejidos internos del cuerpo: las biomoléculas absorben la luz del pulso del láser y reemiten energía en forma de ondas ultrasónicas, que luego se utilizan para crear imágenes.

En este estudio, se utilizaron imágenes fotoacústicas para detectar señales de la hemoglobina en los glóbulos rojos, lo que permitió la visualización en tiempo real del flujo sanguíneo. Si bien la tecnología fotoacústica normalmente requiere múltiples sensores de ultrasonido costosos, el sistema anterior del equipo usaba solo un sensor para crear imágenes 2D. Para avanzar hacia las imágenes en 3D manteniendo un diseño rentable de un solo sensor, los investigadores precalibraron su sistema PACTER con rayos láser estrechos dirigidos a 6.400 puntos distintos en una muestra de sangre bovina. Esta calibración intensiva permitió que el sistema diferenciara posteriormente 6.400 señales de un único rayo láser más amplio durante la toma de imágenes, lo que permitió obtener imágenes rápidas mientras se capturaban una gran cantidad de datos.

La eficacia de PACTER se demostró en experimentos con ratones, en los que el sistema mapeó la vasculatura abdominal en 3D y detectó la frecuencia respiratoria mediante cambios periódicos en el tamaño de los vasos. El sistema también se aplicó a sujetos humanos, visualizando vasos en manos y pies, áreas de evaluación comunes para enfermedades vasculares periféricas y diabetes. El equipo pudo calcular las velocidades del flujo sanguíneo y observar los cambios esperados en la velocidad de la sangre y la forma de los vasos al alterar la hemodinámica con manguitos de presión arterial. En el futuro, los investigadores pretenden mejorar la sensibilidad de PACTER y desarrollar una versión más portátil. Algunas otras aplicaciones potenciales de PACTER incluyen la medición de la oxigenación de la sangre en las arterias y venas del cuello y monitorear el metabolismo cerebral.

“Esta tecnología toma varios conceptos innovadores y los agrupa en una unidad compacta. Podría ver que este tipo de herramienta encontrando aplicaciones amplias, incluida la monitorización continua en hospitales y en el hogar”, dijo Randy King, Ph.D. del Instituto Nacional de Imagenología Biomédica y Bioingeniería.

Enlaces relacionados:
Caltech
Universidad del Sur de California


Miembro Platino
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gynecological Examination Chair
arco-matic
Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.