Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




Modelos de IA generativa podrían encontrar aplicación en TC de rayos X de dosis baja y resonancia magnética acelerada

Por el equipo editorial de HospiMedica en español
Actualizado el 06 Feb 2024

Los modelos de difusión son un tipo de modelos generativos profundos que tienen mucho éxito en aplicaciones como la generación de imágenes y la síntesis de audio, así como en imágenes médicas y diseño de moléculas. Más...

Los modelos de difusión están diseñados para aprender la distribución de los datos, lo cual es importante para descifrar datos complejos y a gran escala del mundo real. Actualmente, existen varias limitaciones con respecto a las aplicaciones prácticas de los modelos de difusión. Por ejemplo, el entrenamiento y la inferencia de modelos de difusión requieren un uso intensivo de datos y son computacionalmente exigentes, lo que limita su uso en varias disciplinas científicas. Las imágenes generadas en imágenes médicas del mundo real son siempre de alta resolución y alta dimensión, mucho más allá de lo que pueden gestionar los modelos de difusión existentes en términos de memoria y eficiencia de tiempo. Además, los modelos de difusión tienen un tiempo de inferencia indeseablemente largo debido al procedimiento de muestreo iterativo.

El equipo de investigación de Ingeniería de Michigan de la Universidad de Michigan (Ann Arbor, MI, EUA) está trabajando en el desarrollo de modelos de difusión nuevos y más eficientes que puedan superar las limitaciones actuales. El equipo se centra en examinar cómo se pueden aplicar los modelos de difusión a problemas inversos, que es cuando se utiliza un conjunto de observaciones para determinar los factores que generaron los resultados. El equipo está trabajando para mejorar la aplicabilidad práctica y la interpretabilidad matemática de los modelos de difusión mediante el desarrollo de nuevos diseños de arquitectura e incrustaciones latentes.

Los investigadores también están desarrollando nuevas técnicas para mejorar la eficiencia del entrenamiento y el muestreo de los modelos de difusión. Están trabajando para crear modelos de difusión computacionalmente eficientes para datos de alta dimensión que podrían mejorar aún más la eficiencia de los datos, la memoria y el tiempo. Esto podría mejorar significativamente aplicaciones como las imágenes biomédicas de alta resolución y altas dimensiones, así como la predicción del movimiento basada en imágenes dinámicas de alta dimensión.

"Los modelos generativos son uno de los temas más candentes en el aprendizaje automático en este momento y estoy entusiasmado de tener la oportunidad de investigar su potencial para resolver problemas inversos, especialmente en imágenes médicas", dijo Fessler, profesor colegiado William L. Root de EECS. "Esperamos aplicar los métodos desarrollados en este proyecto a aplicaciones de imágenes médicas en 3D a gran escala, como la TC de rayos X de baja dosis y la resonancia magnética acelerada".

Enlaces relacionados:
Universidad de Michigan


Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
Enteral Feeding Pump
SENTINELplus
Cardiograph Device
PageWriter TC35
Spirometry & Oximetry Software
MIR Spiro
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.