Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Técnica de IA rastrea automáticamente tumores en grandes conjuntos de datos de resonancia magnética para guiar tratamiento del glioblastoma en tiempo real

Por el equipo editorial de HospiMedica en español
Actualizado el 30 Nov 2023

El tratamiento del glioblastoma, un cáncer cerebral agresivo y prevalente, implica el uso de radioterapia guiada por imágenes de tomografía computarizada. Más...

Si bien este método es eficaz para atacar la radiación, no proporciona información en tiempo real sobre la respuesta del tumor al tratamiento. Esta brecha significa que los médicos no pueden determinar si el cáncer de un paciente está respondiendo al tratamiento o progresando hasta que se toman imágenes de seguimiento, a veces meses después. Dada la rápida progresión del glioblastoma, estos retrasos pueden tener consecuencias críticas.

Para abordar este desafío, un equipo de investigadores del Centro Integral Oncológico Sylvester, parte de la Facultad de Medicina Miller de la Universidad de Miami (Coral Gables, FL, EUA), está utilizando una técnica llamada radioterapia guiada por resonancia magnética. Este método integra resonancias magnéticas diarias con tratamientos de radiación. La tecnología de resonancia magnética ilumina el tumor cerebral y ayuda a guiar los rayos de radiación. Es importante destacar que las imágenes detalladas producidas por las resonancias magnéticas también ofrecen la posibilidad de monitorear casi en tiempo real la respuesta o progresión del tumor. Sin embargo, este método avanzado genera un volumen sustancial de datos. Para los 36 pacientes con glioblastoma en su estudio, cada uno de los 31 puntos temporales incluyó entre cuatro y seis imágenes distintas. Para analizar de manera eficiente esta gran cantidad de información, el equipo ha empleado inteligencia artificial.

La solución basada en inteligencia artificial desarrollada por los investigadores delimita automáticamente los tumores de glioblastoma y las cavidades de resección (espacios que quedan después de la extirpación quirúrgica de los tumores) dentro de estos extensos conjuntos de datos de resonancia magnética. Este rastreo automatizado de tumores y cavidades permite el seguimiento del crecimiento o reducción del tumor durante todo el tratamiento. El algoritmo, una adaptación de trabajos anteriores sobre cáncer de cuello uterino, puede calcular rápidamente el volumen exacto del tumor y realizar un seguimiento de los cambios a lo largo del tiempo. Este método de IA también ofrece una reducción significativa del tiempo en comparación con el análisis manual, que puede tardar más de 20 horas por paciente. La IA puede procesar los mismos datos en aproximadamente 90 minutos.

De cara al futuro, el equipo planea mejorar el enfoque de aprendizaje automático para incluir datos adicionales de las imágenes de resonancia magnética. Un objetivo clave es identificar la pseudoprogresión, una afección en la que el tumor parece crecer debido a la inflamación inducida por el tratamiento pero finalmente retrocede. Esta distinción entre el crecimiento tumoral real y la pseudoprogresión es un aspecto crucial pero desafiante de la investigación. Los investigadores están diseñando un estudio para evaluar la progresión tumoral en pacientes con glioblastoma que se someten a radioterapia guiada por resonancia magnética semanalmente. Su objetivo es ajustar los tratamientos en tiempo real en función de la respuesta de los tumores o los cambios en su tamaño, utilizando el nuevo método de aprendizaje automático para facilitar modificaciones rápidas del tratamiento.

“Se pueden monitorear muchas cualidades diferentes del tumor con resonancia magnética. Ésa es una frontera sin explotar”, afirmó Adrián Breto, estudiante de doctorado y programador. “Aún no hemos llegado al centro de la Tierra en cuanto a lo que la resonancia magnética puede decirnos sobre la enfermedad y la calidad de vida del paciente. Eso es lo que estamos tratando de hacer, extraer tanta información como podamos de estas imágenes para el beneficio del paciente”.

Enlaces relacionados:
Facultad de Medicina Miller  


Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
Analizador de gases en sangre POC
Stat Profile Prime Plus
Exam Table
PF400
Autoclave
Advance
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.