Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




Herramienta de rayos X con IA estima densidad mineral ósea para diagnóstico temprano de osteoporosis

Por el equipo editorial de HospiMedica en español
Actualizado el 20 Oct 2023

La osteoporosis es un problema de salud común que conduce a una baja densidad mineral ósea (DMO), lo que hace que los huesos sean frágiles y aumenta el riesgo de fracturas. Más...

Diagnosticar esta afección generalmente implica pruebas especializadas y a menudo costosas, como la absorciometría de rayos X de doble energía (DXA) y la tomografía computarizada cuantitativa (TCC). Debido a estas limitaciones, se necesitan opciones de detección más convenientes y económicas. Recientemente, las técnicas de aprendizaje automático que utilizan imágenes de rayos X para estimar la DMO se han vuelto más populares, pero a menudo requieren datos de entrenamiento extensos. Los investigadores ahora han ideado un método de aprendizaje automático que ofrece una forma más sencilla de detectar la osteoporosis y otras afecciones óseas desde el principio.

Investigadores del Instituto Nara de Ciencia y Tecnología (NAIST, Nara, Japón) han ideado un método innovador que utiliza un tipo de aprendizaje automático conocido como marco de aprendizaje jerárquico. Este método estima la DMO a partir de imágenes de rayos X estándar. El equipo de investigación utilizó exploraciones de TCC originales de pacientes para crear una imagen de rayos X virtual del área del hueso, alineándola con precisión con las radiografías reales del paciente. Luego, estos datos se utilizaron en tres fases de entrenamiento distintas para desarrollar un modelo final de estimación de DMO. Inicialmente, el modelo se centró en descomponer las imágenes de rayos X para crear una imagen de rayos X virtual del área del hueso. En la fase final, se entrenó el modelo para reconocer la relación entre estas imágenes de rayos X virtuales y los valores de DMO.

Este método pudo estimar con precisión la DMO utilizando una sola imagen de rayos X y demostró una alta eficacia incluso con un par de cientos de conjuntos de datos de pares de imágenes de TC y rayos X. El modelo no sólo proporciona el valor de DMO sino que también genera una imagen de rayos X virtual que muestra la distribución de la densidad ósea, lo que que hace que los resultados sena fáciles de comprender. Para evaluar su eficacia en comparación con métodos tradicionales como DXA y TCC, los investigadores realizaron pruebas de validación con datos clínicos reales. Los valores de DMO obtenidos mediante este nuevo método mostraron una fuerte correlación con los derivados de DXA y TCC, lo que confirma su fiabilidad.

Pruebas de validación adicionales demostraron aún más la solidez de este método. Produjo estimaciones consistentes de DMO a pesar de los cambios en la posición del paciente o los diferentes niveles de compresión de la imagen. Los resultados indican que este nuevo método tiene un enorme potencial para uso médico habitual. Ofrece una manera conveniente de detectar la osteoporosis y monitorear el tratamiento, permitiendo una intervención oportuna y mejorando potencialmente las vidas de quienes viven con la afección.

"La osteoporosis generalmente se diagnostica en etapas avanzadas una vez que sus síntomas se vuelven evidentes. Las imágenes de rayos X pueden ser valiosas para el diagnóstico oportunista, pero extraer eficientemente información sobre la DMO de ellas ha sido un desafío importante", dijo Yoshito Otake de NAIST. "Esperábamos resolver este problema utilizando información derivada de la imagen de tomografía computarizada (TC) en la etapa de entrenamiento para desarrollar un modelo para una estimación precisa, eficiente y explicable de la DMO únicamente a partir de una imagen de rayos X".

Enlaces relacionados:
NAIST  


Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
12-Channel ECG
CM1200B
Spirometry & Oximetry Software
MIR Spiro
Xenon Light Source
CLV-S400
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.