Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




Modelo de aprendizaje automático combina biomarcadores de metilación del ADN, clínicos y de imágenes para detección temprana del cáncer de pulmón

Por el equipo editorial de HospiMedica en español
Actualizado el 22 Aug 2023

El cáncer de pulmón es responsable de un número significativo de muertes relacionadas con el cáncer en todo el mundo. Más...

Aunque varios tratamientos, entre ellos la quimioterapia, la inmunoterapia y la cirugía, han progresado, el panorama general para los pacientes con cáncer de pulmón sigue siendo sombrío. Esto se debe principalmente a un diagnóstico tardío, a menudo en las etapas III o IV, cuando la tasa de supervivencia a cinco años cae por debajo del 10 %. La detección temprana en las etapas 0 a II podría reducir significativamente la mortalidad, pero la falta de tecnologías sensibles y síntomas perceptibles en las primeras etapas presenta desafíos sustanciales.

Los biomarcadores de metilación del ácido desoxirribonucleico (ADN) han demostrado potencial para la detección temprana del cáncer de pulmón, ya que indican eventos relacionados con el inicio del tumor. El uso de métodos de secuenciación de próxima generación para identificar patrones de metilación en el ADN tumoral circulante podría permitir la detección no invasiva del cáncer de pulmón. Si bien la tomografía computarizada de baja dosis (TCBD) ha sido eficaz en la detección temprana entre los grupos de alto riesgo, determinar el riesgo de malignidad de los nódulos pulmonares mediante TCBD sigue siendo un desafío. Ahora, los investigadores han desarrollado y validado un modelo combinado de aprendizaje automático que comprende biomarcadores de metilación del ADN extracelular, clínicos y de imágenes que mejora la clasificación de los nódulos pulmonares y permite un diagnóstico más temprano del cáncer de pulmón.

En el nuevo estudio, investigadores de la Universidad Médica de Guangzhou (Guangzhou, China) desarrollaron un modelo combinado de biomarcadores clínicos y de imagen (CIBM) que utiliza algoritmos de aprendizaje automático para diferenciar nódulos pulmonares malignos y benignos. Cuando se integra con PulmoSeek, un modelo de metilación del ADN extracelular preexistente, el modelo CIBM puede identificar nódulos de pequeño tamaño para diagnosticar el cáncer de pulmón en sus etapas iniciales. Para su estudio, los investigadores inscribieron participantes de 18 años o más, con tipos específicos de nódulos pulmonares, en 20 ciudades chinas. Utilizando más de 800 muestras, los investigadores entrenaron el algoritmo de aprendizaje automático del modelo CIBM para distinguir entre tumores benignos y malignos. Luego, este modelo CIBM se integró con PulmoSeek para crear PulmoSeek Plus, un modelo de diagnóstico combinado. Utilizando el análisis de la curva de decisión, el equipo evaluó su aplicación clínica y clasificó los nódulos en grupos de riesgo. El objetivo era evaluar el desempeño y la capacidad de diagnóstico de tres modelos: PulmoSeek, CIBM y PulmoSeek Plus.

Los resultados mostraron que PulmoSeek Plus tiene potencial para  diagnosticar exitosamente la etapa temprana de nódulos pulmonares benignos o malignos. Utilizado junto con TCBD, este modelo podría ser una herramienta poderosa en la evaluación clínica temprana del cáncer de pulmón. La combinación de CIBM con el modelo PulmoSeek aumentó la sensibilidad de la clasificación de nódulos en un 6 % y el valor predictivo negativo en un 24 %. Además, el desempeño del modelo se mantuvo sólido en los diferentes tipos, tamaños y etapas de nódulos pulmonares, con sensibilidades de caracterización para nódulos en etapa temprana y pequeños de 0,98 y 0,99, respectivamente. Particularmente notable fue su sensibilidad de caracterización del 100 % para nódulos subsólidos, que normalmente son difíciles de categorizar utilizando solo TCBD. La creación del modelo PulmoSeek Plus marca un avance significativo en la detección temprana del cáncer de pulmón. Dado que únicamente requiere muestras de sangre e imágenes de tomografía computarizada no invasivas, el modelo ofrece un enfoque eficiente y prometedor que podría cambiar fundamentalmente la forma en que se diagnostica y trata el cáncer de pulmón.

Enlaces relacionados:
Universidad Médica de Guangzhou  


Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
Ultrasound System
FUTUS LE
Blood Bank Refrigerator
MBR-705GR-PE
Portable Jaundice Management Device
Nymphaea
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.