Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




IA predice riesgo de enfermedades cardíacas utilizando una sola radiografía

Por el equipo editorial de HospiMedica en español
Actualizado el 01 Dec 2022

Las guías actuales recomiendan estimar el riesgo a 10 años de eventos cardiovasculares adversos mayores para establecer quién debe recibir una estatina para la prevención primaria. Más...

Este riesgo se calcula utilizando la puntuación de riesgo de enfermedad cardiovascular aterosclerótica (ASCVD), un modelo estadístico que considera una serie de variables, que incluyen edad, sexo, raza, presión arterial sistólica, tratamiento de la hipertensión, tabaquismo, diabetes tipo 2 y análisis de sangre. La medicación con estatinas se recomienda para pacientes con un riesgo a 10 años del 7,5 % o superior. Ahora, los investigadores desarrollaron un modelo de aprendizaje profundo que utiliza una sola radiografía de tórax para predecir el riesgo de muerte a 10 años por un ataque cardíaco o un derrame cerebral, derivado de la enfermedad cardiovascular aterosclerótica.

El aprendizaje profundo es un tipo avanzado de inteligencia artificial (IA) que se puede entrenar para buscar imágenes de rayos X para encontrar patrones asociados con enfermedades. Un equipo de investigadores del Hospital General de Massachusetts (Boston, MA, EUA) entrenó un modelo de aprendizaje profundo usando una sola entrada de rayos X de tórax (RxT). Desarrollaron el modelo, conocido como riesgo CXR-CVD, para predecir el riesgo de muerte por enfermedad cardiovascular utilizando 147.497 radiografías de tórax de 40.643 participantes. Los investigadores probaron el modelo utilizando una segunda cohorte independiente de 11.430 pacientes ambulatorios (edad media 60,1 años; 42,9 % hombres) que se sometieron a una radiografía de tórax ambulatoria de rutina y eran potencialmente elegibles para la terapia con estatinas.

De 11.430 pacientes, 1.096, o el 9,6 %, sufrieron un evento cardíaco adverso mayor durante la mediana de seguimiento de 10,3 años. Hubo una asociación significativa entre el riesgo predicho por el modelo de aprendizaje profundo de riesgo CXR-CVD y los eventos cardíacos importantes observados. Los investigadores también compararon el valor pronóstico del modelo con el estándar clínico establecido para decidir la elegibilidad para las estatinas. Esto se pudo calcular en solo 2.401 pacientes (21 %) debido a la falta de datos (p. ej., presión arterial, colesterol) en el registro electrónico. Para este subconjunto de pacientes, el modelo de riesgo de CXR-CVD se desempeñó de manera similar al estándar clínico establecido e incluso proporcionó un valor progresivo. Se necesita investigación adicional, incluido un ensayo aleatorio controlado, para validar el modelo de aprendizaje profundo, que en última instancia podría servir como una herramienta de apoyo a la toma de decisiones para los médicos tratantes.

"Nuestro modelo de aprendizaje profundo ofrece una solución potencial para la detección oportunista basada en la población del riesgo de enfermedad cardiovascular utilizando imágenes de rayos X de tórax existentes", dijo el autor principal del estudio, Jakob Weiss, MD, radiólogo afiliado al Centro de Investigación de Imágenes Cardiovasculares de Hospital General de Massachusetts y el programa de IA en Medicine en el Hospital Brigham and Women's en Boston. "Este tipo de evaluación podría usarse para identificar a las personas que se beneficiarían de la medicación con estatinas pero que actualmente no reciben tratamiento".

"La belleza de este enfoque es que solo necesita una radiografía, que se adquiere millones de veces al día en todo el mundo", dijo el Dr. Weiss. "Basado en una sola imagen de rayos X de tórax existente, nuestro modelo de aprendizaje profundo predice futuros eventos cardiovasculares adversos importantes con un rendimiento similar y un valor incremental al estándar clínico establecido".

"Reconocemos desde hace mucho tiempo que los rayos X capturan información más allá de los hallazgos de diagnóstico tradicionales, pero no hemos utilizado estos datos porque no hemos tenido métodos sólidos y confiables", agregó el Dr. Weiss. "Los avances en IA lo están haciendo posible ahora".

Enlaces relacionados:
Hospital General de Massachusetts  


Miembro Platino
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
Enteral Feeding Pump
SENTINELplus
Infant Resuscitator
Easypuff
Spirometry & Oximetry Software
MIR Spiro
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.