Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Algoritmo de IA supera a los radiólogos en medición de la propagación del cáncer en TC

Por el equipo editorial de HospiMedica en español
Actualizado el 26 Oct 2022

Los cánceres de cabeza y cuello y sus tratamientos estándar (cirugía, radiación o quimioterapia) conllevan una morbilidad significativa. Más...

Afectan la forma en que una persona se ve, habla, come o respira. Por lo tanto, existe un gran interés en desarrollar estrategias de tratamiento menos intensas para los pacientes. Entre los factores que determinan la etapa del cáncer se encuentran el tamaño del tumor original, la cantidad de ganglios linfáticos involucrados y la extensión extraganglionar, cuando las células malignas se diseminan más allá de los bordes de los ganglios linfáticos del cuello hacia el tejido circundante. Ahora, una nueva investigación ha demostrado que la inteligencia artificial (IA) puede mejorar los métodos actuales para predecir el riesgo de que el cáncer de cabeza y cuello se propague fuera de los bordes de los ganglios linfáticos del cuello.

En un estudio realizado por investigadores del Grupo de Investigación del Cáncer ECOG-ACRIN (ECOG-ACRIN, Filadelfia, PA, EUA), un algoritmo de aprendizaje profundo personalizado que usa imágenes de tomografía computarizada (TC) estándar y datos asociados aportados por pacientes que participaron en el estudio E3311 de fase 2 se mostró prometedor, especialmente para pacientes con un nuevo diagnóstico de cáncer de cabeza y cuello relacionado con el virus del papiloma humano (VPH). El conjunto de datos validado E3311 tiene el potencial de contribuir a la estadificación más precisa de la enfermedad y la predicción del riesgo. El ensayo de fase 2 E3311 completado mostró que la radiación de dosis baja a 50 Gray (Gy) sin quimioterapia después de la cirugía transoral condujo a una supervivencia muy alta y una calidad de vida sobresaliente en pacientes con riesgo medio de recurrencia.

Los investigadores desarrollaron y validaron un algoritmo de aprendizaje profundo basado en redes neuronales basado en tomografías computarizadas de diagnóstico, patología y datos clínicos. La fuente fue la cohorte de participantes en el ensayo E3311 que se evaluó en alto riesgo de recurrencia mediante medidas patológicas y clínicas estándar. En el E3311, los pacientes se evaluaron como de alto riesgo si había una extensión extraganglionar (ENE) ≥1 mm. Estos pacientes fueron asignados a quimioterapia y dosis altas de radiación (66 Gy) después de la cirugía transoral.

Los investigadores obtuvieron tomografías computarizadas previas al tratamiento y los correspondientes informes de patología quirúrgica de la cohorte de alto riesgo E3311, según estuvieran disponibles. De 177 exploraciones recopiladas, se anotaron 311 ganglios: 71 (23 %) con ENE y 39 (13 %) con ≥1 mm ENE. La herramienta mostró un alto rendimiento en la predicción de ENE, superando sustancialmente las revisiones realizadas por radiólogos expertos en cabeza y cuello. El equipo ahora planea evaluar el conjunto de datos como parte de futuros estudios de tratamiento para el cáncer de cabeza y cuello. El algoritmo se evaluará por su potencial para mejorar los métodos actuales de estadificación de la enfermedad y evaluación de riesgos.

“El algoritmo de aprendizaje profundo clasificó con precisión el 85 % de los nodos con ENE en comparación con el 70 % de los radiólogos”, dijo Benjamin Kann, MD, quien dirigió el estudio para ECOG-ACRIN. "En cuanto a la especificidad y la sensibilidad, el algoritmo de aprendizaje profundo tuvo una precisión del 78 % frente al 62 % de los radiólogos".

"Nuestra capacidad para desarrollar biomarcadores a partir de imágenes de tomografía computarizada estándar es una nueva y emocionante área de investigación clínica y brinda la esperanza de que podremos adaptar mejor el tratamiento para pacientes individuales, incluida la decisión sobre cuándo utilizar mejor la cirugía y en quién reducir la extensión del tratamiento", agregó la autora principal Barbara A. Burtness, MD.

Enlaces relacionados:
ECOG-ACRIN


Miembro Platino
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
Heavy-Duty Wheelchair Scale
6495 Stationary
Isolation Stretcher
IS 736
Exam Table
PF400
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.