Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




Algoritmo de diagnóstico médico de IA para análisis de imágenes de RM utiliza autoaprendizaje en todos los hospitales

Por el equipo editorial de HospiMedica en español
Actualizado el 02 Sep 2022

La salud está siendo revolucionada actualmente por la inteligencia artificial. Más...

Con soluciones precisas de IA, los médicos pueden recibir apoyo en el diagnóstico. Sin embargo, tales algoritmos requieren una cantidad considerable de datos y los hallazgos del especialista radiológico asociado para el entrenamiento. Sin embargo, la creación de una base de datos central tan grande impone exigencias especiales a la protección de datos. Además, la creación de hallazgos y anotaciones, por ejemplo, el marcado de tumores en una imagen de resonancia magnética, requiere mucho tiempo. Para superar estos desafíos, los investigadores han desarrollado un algoritmo que puede aprender de forma independiente entre diferentes instituciones médicas. La característica clave del algoritmo es que es de "autoaprendizaje", es decir, no requiere hallazgos extensos que consumen mucho tiempo ni marcados por los radiólogos en las imágenes de resonancia magnética.

Un equipo multidisciplinario de la Universidad Técnica de Munich (TUM, Munich, Alemania) colaboró con otros médicos e investigadores para desarrollar un algoritmo de diagnóstico médico basado en IA para imágenes de resonancia magnética del cerebro, sin datos anotados o procesados por un radiólogo. Además, este algoritmo debía ser entrenado "federalmente": de esta manera, el algoritmo "viene a los datos", de modo que los datos de imágenes médicas que requieren una protección especial podrían permanecer en la clínica respectiva y no tener que recopilarse de forma centralizada. El algoritmo federado se entrenó en más de 1.500 exploraciones por RM de participantes sanos del estudio de cuatro instituciones, manteniendo la privacidad de los datos.

Luego, el algoritmo se usó para analizar más de 500 resonancias magnéticas de pacientes para detectar enfermedades como la esclerosis múltiple, la enfermedad vascular y varias formas de tumores cerebrales que el algoritmo nunca había visto antes. Esto abre nuevas posibilidades para desarrollar algoritmos federados eficientes basados en IA que aprenden de forma autónoma mientras protegen la privacidad. En su estudio, los investigadores pudieron demostrar que el algoritmo de IA federado que desarrollaron superó a cualquier algoritmo de IA entrenado utilizando datos de una sola institución. Para agrupar el conocimiento sobre las imágenes de resonancia magnética del cerebro, el equipo de investigación entrenó el algoritmo de IA en instituciones médicas diferentes e independientes sin violar la privacidad de los datos ni recopilarlos de forma centralizada. Al proteger los datos de los pacientes y al mismo tiempo reducir la carga de trabajo de los radiólogos, los investigadores creen que su tecnología de inteligencia artificial federada hará avanzar significativamente la medicina digital.

"Una vez que este algoritmo aprenda cómo se ven las imágenes de resonancia magnética del cerebro sano, le será más fácil detectar enfermedades. Para lograr esto, se requiere una agregación computacional inteligente y coordinación entre los institutos participantes", dijo el Prof. Dr. Albarqouni. PD Dr. Benedikt Wiestler, médico principal del Hospital Universitario de TUM, que participó en el estudio. "Entrenar el modelo con datos de diferentes centros contribuye significativamente al hecho de que nuestro algoritmo detecta enfermedades de manera mucho más sólida que otros algoritmos que solo se entrenan con datos de un centro".

 

 


Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
Heavy-Duty Wheelchair Scale
6495 Stationary
Infant Incubator
OKM 801
Spirometry & Oximetry Software
MIR Spiro
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.