Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




Algoritmos de IA permiten un diagnóstico de imagen médica altamente preciso y rentable

Por el equipo editorial de HospiMedica en español
Actualizado el 14 Apr 2022

Las imágenes médicas son una parte importante de la atención médica moderna, ya que mejoran la precisión, la confiabilidad y el desarrollo del tratamiento para diversas enfermedades. Más...

La inteligencia artificial (IA) también se ha utilizado ampliamente para mejorar aún más el proceso. Sin embargo, el diagnóstico por imagen médica convencional que emplea algoritmos de IA requiere grandes cantidades de anotaciones como señales de supervisión para el entrenamiento del modelo. Para adquirir etiquetas precisas para los algoritmos de IA, los radiólogos, como parte de la rutina clínica, preparan informes de radiología para cada uno de sus pacientes, seguidos por el personal de anotación que extrae y confirma las etiquetas estructuradas de esos informes utilizando reglas definidas por humanos y herramientas de procesamiento de lenguaje natural existente (herramientas de PNL). La máxima precisión de las etiquetas extraídas depende de la calidad del trabajo humano y varias herramientas de PNL. El método tiene un alto precio, ya que requiere mucho trabajo y tiempo.

Ahora, un equipo de ingeniería de la Universidad de Hong Kong (HKU, Hong Kong) ha desarrollado un nuevo enfoque "REFERS" (Revisión de informes de texto libre para supervisión), que puede reducir el costo humano en un 90 %, al permitir la adquisición automática de señales de supervisión de cientos de miles de informes de radiología al mismo tiempo. Alcanza una alta precisión en las predicciones, superando a su contraparte del diagnóstico por imagen médica convencional que emplea algoritmos de IA. El enfoque innovador marca un paso sólido hacia la realización de inteligencia artificial médica generalizada.

Para entrenar a REFERS, el equipo de investigación utilizó una base de datos pública con 370.000 imágenes de rayos X e informes radiológicos asociados sobre 14 enfermedades torácicas comunes, incluidas atelectasia, cardiomegalia, derrame pleural, neumonía y neumotórax. Los investigadores lograron construir un modelo de reconocimiento de radiografías utilizando solo 100 radiografías que alcanzaron un 83 % de precisión en las predicciones. Cuando el número se incrementó a 1.000, su modelo exhibió un rendimiento asombroso con una precisión del 88,2 %, que superó a su homólogo entrenado con 10.000 anotaciones de radiólogos (precisión del 87,6 %). Cuando se utilizaron 10.000 radiografías, la precisión fue del 90,1 %. En general, un nivel de precisión superior al 85 % en las predicciones es útil en aplicaciones clínicas del mundo real.

REFERS logra el objetivo mediante la realización de dos tareas relacionadas con el informe, es decir, la generación de informes y la comparación entre radiografía e informe. En la primera tarea, REFERS traduce radiografías en informes de texto codificando primero las radiografías en una representación intermedia, que luego se utiliza para predecir informes de texto a través de una red de decodificación. Se define una función de costo para medir la similitud entre los textos de informe previstos y reales, en función de la cual se emplea la optimización basada en gradientes para entrenar la red neuronal y actualizar sus pesos. En cuanto a la segunda tarea, REFERS primero codifica tanto las radiografías como los informes de texto libre en el mismo espacio semántico, donde las representaciones de cada informe y sus radiografías asociadas se alinean a través del aprendizaje contrastivo.

"El diagnóstico de imágenes médicas habilitado por IA tiene el potencial de ayudar a los especialistas médicos a reducir su carga de trabajo y mejorar la eficiencia y precisión del diagnóstico, lo que incluye, entre otros, reducir el tiempo de diagnóstico y detectar patrones sutiles de enfermedades", dijo el profesor Yu Yizhou, líder del equipo del Departamento de Ciencias de la Computación de HKU en la Facultad de Ingeniería. "Creemos que las oraciones de razonamiento lógico abstracto y complejo en los informes de radiología brindan información suficiente para aprender características visuales fácilmente transferibles. Con la capacitación adecuada, REFERS aprende directamente representaciones de radiografías de informes de texto libre sin la necesidad de involucrar mano de obra en el etiquetado”.

“En comparación con los métodos convencionales que dependen en gran medida de las anotaciones humanas, REFERS tiene la capacidad de adquirir supervisión de cada palabra en los informes de radiología. Podemos reducir sustancialmente la cantidad de anotación de datos en un 90 % y el costo de construir inteligencia artificial médica. Marca un paso significativo hacia la realización de inteligencia artificial médica generalizada”, dijo el Dr. Zhou Hong-Yu, el primer autor del artículo.

Enlaces relacionados:
Universidad de Hong Kong


Miembro Platino
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Miembro Plata
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Digital X-Ray Detector Panel
Acuity G4
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.