Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




El primer escáner TC clínica combina dos tecnologías de rayos X para producir imágenes de rayos X de campo oscuro en 3D

Por el equipo editorial de HospiMedica en español
Actualizado el 11 Feb 2022

Por primera vez, los investigadores han integrado el método de rayos X de campo oscuro en un escáner de tomografía computarizada (TC) adecuado para uso clínico. Más...

Con el nuevo prototipo desarrollado por el equipo de investigadores de la Universidad Técnica de Munich (Munich, Alemania), ahora es posible producir imágenes tridimensionales de rayos X de campo oscuro. Las imágenes de campo oscuro proporcionan información adicional a las imágenes de rayos X convencionales. La TC es uno de los métodos clínicos más importantes para un diagnóstico preciso y rápido. Al combinar múltiples imágenes de rayos X, se generan imágenes tridimensionales del paciente. Con las imágenes de campo oscuro, ahora se puede acceder a información adicional sobre estructuras de tejido fino, en particular en el pulmón. Hasta ahora, los desafíos técnicos han impedido la integración de esta nueva tecnología en los escáneres de TC clínicos para examinar a los pacientes. El nuevo escáner de TC combina ambas tecnologías de rayos X. El nuevo prototipo de TC ya se ha utilizado con éxito con un maniquí de tórax, un modelo de la parte superior del cuerpo humano, y es lo suficientemente grande para las aplicaciones previstas con pacientes reales.

Con el equipo de rayos X convencional, los rayos X son atenuados por el tejido intermedio a medida que viajan desde la fuente hasta el detector. Este efecto se utiliza para producir imágenes basadas en los distintos grados de atenuación asociados con diferentes tipos de tejidos y estructuras. Es por eso que los huesos y estructuras similares, que tienen un efecto atenuante más fuerte, aparecen blancos en los rayos X, mientras que los tipos de tejido más transparentes, como el pulmón, producen imágenes más oscuras. Las imágenes de campo oscuro, por el contrario, hacen uso de la dispersión de ángulo pequeño de los rayos X. Cuando los rayos X interactúan con materiales de diferentes densidades, como la interfaz entre el tejido pulmonar y el aire, se dispersan. El análisis de este efecto de dispersión proporciona información adicional sobre estructuras tisulares muy finas, a las que de otro modo no se puede acceder con las imágenes de rayos X convencionales. Para detectar la dispersión de la radiación de rayos X, se requiere un conjunto de tres rejillas ópticas. Se colocan entre la fuente de rayos X y el detector. Cuando los rayos X pasan a través de estas rejillas, se produce un patrón característico en el detector. Cuando se coloca una muestra o una persona en la trayectoria del haz, este patrón característico cambia. Estas desviaciones se utilizan luego para analizar la estructura de la muestra o el tejido de la persona.

La implementación del método de campo oscuro en un escáner de TC de tamaño humano plantea varios desafíos técnicos. Hasta ahora, esto ha limitado los dispositivos de TC de campo oscuro a una escala mucho menor de la que se necesitaría para pacientes humanos. Aparte del tamaño, la rápida rotación de la unidad de escaneo también crea dificultades especiales para el diseño técnico. La unidad de escaneo de los escáneres de TC, conocida como pórtico, gira a velocidades muy altas. Esto provoca vibraciones que afectan a los componentes finamente ajustados en el interior del dispositivo. Sobre la base de un análisis detallado de estas vibraciones, el equipo pudo utilizarlas para implementar el cambio requerido entre las rejillas necesarias para la obtención de imágenes de campo oscuro. Para analizar los escaneos, desarrollaron nuevos algoritmos para filtrar los efectos de vibración basados ​​en escaneos de referencia. Como próximo paso, los investigadores planean optimizar aún más el prototipo de TC de campo oscuro y prepararse para las primeras exploraciones de pacientes humanos.

“Por primera vez, demostramos que la tecnología de rayos X de campo oscuro también se puede integrar en un escáner de tomografía computarizada clínico. Aunque esta tecnología se encuentra en sus primeras etapas, los estudios preclínicos con ratones han demostrado claros beneficios de las tomografías computarizadas de campo oscuro, especialmente para capturar imágenes del tejido pulmonar”, dijo Franz Pfeiffer, profesor de física biomédica y director del Instituto Munich de Ingeniería Biomédica de la UTM, quien dirigió el estudio.

“Con el prototipo de TC de campo oscuro, podemos capturar imágenes de rayos X convencionales y de campo oscuro en un solo escaneo. Esto arroja información adicional que podría usarse en el futuro no solo para diagnosticar enfermedades pulmonares, sino también para diferenciar entre varios tipos de cálculos renales y depósitos tisulares”, agregó Manuel Viermetz, uno de los dos primeros autores del estudio.

Enlaces relacionados:

Universidad Técnica de Munich


Miembro Platino
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
Enteral Feeding Pump
SENTINELplus
Medical Monitor
VITALMAX 4100SL
OR Table Accessory
Angular Accessory Rail
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.