Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
GC Medical Science corp.

Deascargar La Aplicación Móvil




Google ensaya un algoritmo de IA para ayudar a detectar los cánceres de mama metastásicos

Por el equipo editorial de HospiMedica en español
Actualizado el 30 Oct 2018
Los científicos de Google AI (Mountain View, CA, EUA) que desarrollan un algoritmo para detectar la propagación del cáncer de mama han publicado nuevas investigaciones que demuestran su promesa como una herramienta de ayuda para los patólogos.

Google AI había descrito su método basado en el aprendizaje profundo para mejorar la exactitud diagnóstica (LYmph Node Assistant, o LYNA) para el Desafío Camelyon ISBI 2016, que proporciona láminas de patología de ganglios linfáticos del tamaño de gigapixeles de pacientes con cáncer de mama para que los investigadores desarrollen algoritmos informáticos para detectar el cáncer metastásico. Más...
LYNA ha logrado tasas de detección de cáncer significativamente más altas que las reportadas anteriormente. En sus últimos estudios publicados, los científicos presentaron una herramienta de asistencia al patólogo, de prueba de concepto, basada en LYNA y su investigación de estos factores.

En el primer artículo, los científicos aplicaron su algoritmo para desidentificar las láminas de patología, tanto del Desafío Camelyon, como de un conjunto de datos independiente proporcionado por nuestros coautores en el Centro Médico Naval de San Diego. Este conjunto de datos adicional consistió en muestras de patología de un laboratorio diferente que utilizaron diferentes procesos, mejorando así la representación de la diversidad de láminas y artefactos observados en la práctica clínica habitual. LYNA demostró ser robusto a la variabilidad de la imagen y a numerosos artefactos histológicos, y logró un desempeño similar en ambos conjuntos de datos sin desarrollo adicional.

En ambos conjuntos de datos, LYNA pudo diferenciar correctamente una lámina con cáncer metastásico de una lámina sin cáncer el 99% de las veces. Además, LYNA podía identificar con exactitud la ubicación de ambos tipos de cáncer y otras regiones sospechosas dentro de cada lámina, a pesar de que algunas de ellas eran demasiado pequeñas para que los patólogos las detectaran de manera consistente. Con base en esto, los investigadores creen que un beneficio potencial de LYNA podría ser resaltar estas áreas de preocupación para que los patólogos revisen y determinen el diagnóstico final.

En su segundo artículo, seis patólogos certificados por la junta completaron una tarea de diagnóstico simulada en la que revisaron los ganglios linfáticos para detectar el cáncer de mama metastásico con y sin la asistencia de LYNA. Para la tarea, a menudo laboriosa, de detectar pequeñas metástasis (denominadas micrometástasis), el uso de LYNA hizo que la tarea fuese subjetivamente "más fácil" (según la dificultad diagnóstica autoinformada por los patólogos) y redujo a la mitad el tiempo de revisión de las láminas, requiriendo aproximadamente un minuto en lugar de dos minutos por lámina.

Esto indica el potencial intrigante de las tecnologías de asistencia como LYNA para reducir la carga de las tareas de identificación repetitivas y para permitir que los patólogos se concentren en otras tareas clínicas y de diagnóstico más desafiantes. En términos de exactitud diagnóstica, los patólogos en este estudio pudieron detectar micrometástasis con LYNA de manera más confiable, reduciendo la tasa de micrometástasis pasados por alto en un factor de dos. De manera alentadora, los patólogos con asistencia de LYNA fueron más exactos que los patólogos no asistidos o que el propio algoritmo de LYNA, lo que indica que las personas y los algoritmos pueden trabajar juntos de manera efectiva para obtener mejores resultados que cuando trabajan de forma independiente.

Enlace relacionado:
Google AI


Miembro Platino
VISOR EN PANTALLA DE DIAGNÓSTICO EN TIEMPO REAL
GEMweb Live
Miembro Oro
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Premium Air-Mattress
MA-51
Infant Resuscitator
Easypuff
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.