Presenta Sitios para socios Información LinkXpress hp
Ingresar
Publique su anuncio con nosotros
Radcal IBA  Group

Deascargar La Aplicación Móvil




Inteligencia artificial para mejorar la interpretación de mamogramas

Por el equipo editorial de HospiMedica en español
Actualizado el 11 Jul 2018
Un equipo de investigadores del Laboratorio Nacional del Departamento de Energía Oak Ridge (Oak Ridge, TN, EUA) utilizó con éxito la inteligencia artificial para mejorar la comprensión de los procesos cognitivos implicados en la interpretación de imágenes. Más...
Su trabajo, publicado en la revista Journal of Medical Imaging, ayudará a reducir los errores en el análisis de las imágenes de diagnóstico por parte de los profesionales de la salud y tiene el potencial de mejorar los resultados de salud para las mujeres afectadas por el cáncer de mama.

La detección temprana del cáncer de mama es fundamental para un tratamiento eficaz, que requiere una interpretación exacta de los mamogramas de las pacientes. El equipo de investigadores liderado por el ORNL descubrió que los análisis de las mamografías realizados por los radiólogos se vieron significativamente influenciados por el sesgo del contexto o por las experiencias previas de diagnóstico del radiólogo. Los nuevos practicantes de radiología fueron los más susceptibles al fenómeno, aunque incluso los radiólogos más experimentados son víctimas en cierta medida, según los investigadores.

Los investigadores diseñaron un experimento destinado a seguir los movimientos oculares de los radiólogos en varios niveles de habilidad para comprender mejor el sesgo de contexto involucrado en sus interpretaciones individuales de las imágenes. El experimento siguió los movimientos oculares de tres radiólogos certificados y siete residentes de radiología que analizaron 100 estudios mamográficos de la Base de Datos Digital de la Universidad del Sur de la Florida para las mamografías de cribado. Las 400 imágenes, que representan una mezcla de cáncer, sin cáncer y casos que simulan cáncer pero que son benignos, se seleccionaron específicamente para cubrir una gama de casos similar a la que se encuentra en un entorno clínico.

Los participantes, que fueron agrupados por niveles de experiencia y no tenían conocimiento previo de lo que estaba contenido en las radiografías individuales, fueron equipados con un dispositivo de seguimiento ocular montado en la cabeza diseñado para registrar sus “datos de mirada sin procesar”, que caracterizaban su comportamiento visual general. El estudio también registró las decisiones de diagnóstico de los participantes a través de la ubicación de los hallazgos sospechosos junto con sus características de acuerdo con el léxico BI-RADS, el esquema de informes de los radiólogos para las mamografías. Al calcular una medida conocida como dimensión fractal en la ruta de exploración de los participantes individuales (mapa de movimientos oculares) y realizar una serie de cálculos estadísticos, los investigadores pudieron discernir cómo los movimientos oculares de los participantes difieren entre las diferentes mamografías. También calcularon la desviación en el contexto de las diferentes categorías de imágenes, como las imágenes que muestran cáncer y las que pueden ser más fáciles o más difíciles de descifrar.

Para poder seguir eficazmente los movimientos oculares de los participantes, los investigadores tuvieron que emplear datos de sensores en tiempo real, que registran casi todos los movimientos de los ojos de los participantes. Sin embargo, con 10 observadores que interpretaron 100 casos, los datos pronto comenzaron a sumarse, por lo que no es práctico administrar manualmente una tarea de datos tan intensiva. Esto hizo que los investigadores recurrieran a la inteligencia artificial para ayudarlos a encontrar los resultados de manera eficiente y efectiva. Utilizando la supercomputadora Titan del ORNL, los investigadores pudieron entrenar rápidamente los modelos de aprendizaje profundo necesarios para dar sentido a los grandes conjuntos de datos. Mientras que estudios similares en el pasado han usado métodos de agregación para dar sentido a los enormes conjuntos de datos, el equipo de investigadores del ORNL procesó la secuencia de datos completa, una tarea crítica debido a que con el tiempo esta secuencia reveló diferenciaciones en los caminos de los ojos de los participantes mientras analizaron las diversas mamografías.

En un artículo relacionado publicado en el Journal of Human Performance in Extreme Environments, los investigadores demostraron cómo las redes neuronales convolucionales, un tipo de inteligencia artificial aplicada comúnmente al análisis de imágenes, superaban significativamente a otros métodos, como redes neuronales profundas y redes de creencias profundas en el análisis de los datos de seguimiento visual y, por extensión, a validar el experimento como un medio para medir el sesgo por contexto. Además, aunque el experimento se centró en radiología, los datos resultantes llevaron a la necesidad de crear “interfaces inteligentes y sistemas de apoyo a las decisiones” para ayudar al desempeño humano en una variedad de tareas complejas, incluido el control del tráfico aéreo y la gestión en el campo de batalla.

Si bien es poco probable que las máquinas reemplacen a los radiólogos (u otros humanos involucrados en decisiones rápidas y de alto impacto), tienen un enorme potencial para ayudar a los profesionales de la salud y otros responsables de la toma de decisiones a reducir errores debido a fenómenos como el sesgo de contexto, dijo Gina Tourassi, líder del equipo y directora del Instituto de Ciencias de Datos de Salud del ORNL. “Estos hallazgos serán fundamentales en la capacitación futura de los profesionales médicos para reducir los errores en las interpretaciones de las imágenes de diagnóstico. Estos estudios informarán las interacciones entre humanos y computadoras, avanzando a medida que usemos inteligencia artificial para aumentar y mejorar el desempeño humano”, dijo Tourassi.




Miembro Platino
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Miembro Oro
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Miembro Plata
ECG Management System
NEMS Web
Pulmonary Ventilator
OXYMAG
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a HospiMedica.es y acceda a las noticias y eventos que afectan al mundo de la Medicina.
  • Edición gratuita de la versión digital de HospiMedica en Español enviado regularmente por email
  • Revista impresa gratuita de la revista HospiMedica en Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de HospiMedica en Español digital
  • Boletín de HospiMedica en Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Cuidados Criticos

ver canal
Imagen: el dispositivo CircTrek monitorea continuamente las células circulantes en los vasos sanguíneos, lo que permite un seguimiento de la salud no invasivo en tiempo real (foto cortesía de Kyuho Jang, Gopikrishna Pillai y DeBlina Sarkar/MIT)

Dispositivo portátil rastrea células individuales en el torrente sanguíneo en tiempo real

Investigadores han desarrollado un dispositivo de monitorización médica no invasivo capaz de detectar células individuales dentro de los vasos sanguíneos, y que además... Más

Técnicas Quirúrgicas

ver canal
Imagen: el profesor Bumsoo Han y la  investigadora postdoctoral Sae Rome Choi fueron coautores de un estudio sobre el uso del origami de ADN para mejorar la obtención de imágenes de tejido pancreático denso (foto cortesía de Fred Zwicky/University of Illinois Urbana-Champaign)

El origami de ADN mejora la imagenología del tejido pancreático denso para la detección del cáncer

Uno de los desafíos de la lucha contra el cáncer de páncreas es encontrar maneras de penetrar el tejido denso del órgano para definir los límites entre el tejido maligno... Más

Cuidados de Pacientes

ver canal
Imagen: La plataforma de biosensores portátil utiliza sensores electroquímicos impresos para la detección rápida y selectiva de Staphylococcus aureus (foto cortesía de AIMPLAS)

Plataforma de biosensores portátiles reducirá infecciones adquiridas en el hospital

En la Unión Europea, aproximadamente 4 millones de pacientes adquieren infecciones asociadas a la atención de la salud (IAAS), o infecciones nosocomiales, cada año, lo que provoca alrededor de 37.... Más

TI

ver canal
Imagen: Un sensor de sudor portátil basado en la tecnología de nanopartículas de núcleo-capa (Foto cortesía de Caltech)

Nanopartículas imprimibles permiten la producción masiva de biosensores portátiles

Es probable que el futuro de la medicina se centre en la personalización de la atención médica, comprendiendo exactamente lo que cada individuo necesita y proporcionando la combinación... Más

Pruebas POC

ver canal
Imagen: El lector de inmunoensayo cuantitativo RPD-3500 (Fotografía cortesía de BK Electronics)

Lector de inmunoensayo de pruebas POC proporciona análisis cuantitativo de kits de prueba para diagnóstico más preciso

Un lector de inmunoensayos cuantitativos pequeño y liviano que proporciona un análisis cuantitativo de cualquier tipo de kits o tiras de prueba rápida, y se puede conectar a una PC... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.